联系方式
地址: 吉林省长春市卫星路 7089号(东)、7186号(南) 7989号
超快光物理
当前位置: 首页 > 研究生培养 > 物理学导师 > 超快光物理
姓名:郎鹏
学历:博士
职称:副教授
研究方向:超快等离激元及二维拓扑准粒子
邮箱:langpeng@cust.edu.cn
主要学习、工作经历
教育:2008年09月----2021年06月,长春理工大学大学,理学院,光电子技术科学专业,工学学士;
2013年09月----2019年06月,长春理工大学,理学院,光学专业,理学博士 (硕博连读)。
工作:2019年07月----2021年07月,长春理工大学,物理学院,电子科学与技术博士后流动站,助理研究员;
2021年07月----2021年12月,长春理工大学,物理学院,讲师;
2022年01月至今,长春理工大学,物理学院,副教授。
主要教学工作
主讲:本科生课程《专业英语》、《超快光学》
主要科研工作

主要科研工作成果:

学术论文成果

[1] ZHAO X, PENG S, JI B, et al. Modulation of high-order propagating surface plasmon vortex fields based on V-shaped grooves [J]. Optics Communications, 2025, 577(131461.

[2] SHI X, JI B, WANG L, et al. Active Control of Multichannel Airy Surface Plasmon Polaritons in Fishbone Nanostructure for Nanoparticle Trapping [J]. ACS Applied Nano Materials, 2024, 8(1): 449-58.

[3] XU Y, JI B, LANG P, et al. Optimization of strong coupling between dipole and quadrupole modes through variations in plasmonic nanodimers [J]. Physica B: Condensed Matter, 2025, 699(416839.

[4] TIAN F, LANG P, WAN Z, et al. Optimizing the chiral optical response in nanostructures using plasmonic Fano resonance [J]. Journal of the Optical Society of America B, 2024, 41(12): 2811-8.

[5] WANG L, JI B, XU Y, et al. Mitigating interface damping of metal adhesion layers of nanostructures through bright-dark plasmonic mode coupling [J]. Applied Physics Letters, 2024, 125(19):

[6] ZHAO Z, JI B, PENG S, et al. Characterization of a four-channel surface plasmon polaritons emitter based on a combined grooves coupling structure using photoemission electron microscopy [J]. Optics Communications, 2025, 574(131239.

[7] SONG H-B, LANG P, JI B-Y, et al. Tailoring group delay dispersion of surface plasmon polaritons propagating on thin gold film by chirped femtosecond laser [J]. ACTA PHYSICA SINICA, 2024, 73(17):

[8] SONG H, LANG P, JI B, et al. All-Optical Control of Ultrafast Switching between the Hybridized Plasmonic Fields of Au Nanorod Dimer in fs-nm Scale with Dispersed Femtosecond Laser [J]. The Journal of Physical Chemistry Letters, 2024, 15(31): 7924-30.

[9] YUAN L, WANG Q, YU H, et al. High-sensitivity determination of heavy metal elements in water with circular grooves and nanoparticle-enhanced LIBS [J]. Journal of Analytical Atomic Spectrometry, 2024, 39(8): 2097-105.

[10]     SUN B, LANG P, XU Y, et al. Manipulation of plasmon dephasing time via the coupling between localized surface plasmon resonance and waveguide modes [J]. Optics Communications, 2024, 561(130492.

[11]      WANG Y, LANG P, JI B, et al. Dual-band plasmon-induced transparency based on a vanadium dioxide ring resonator terahertz metamaterial [J]. Journal of the Optical Society of America B, 2023, 40(12): 3231-9.

[12]     AN X, JI B, HU H, et al. Arbitrary orthogonal polarization-dependent directional launching of Bessel-like surface plasmon polariton beams [J]. Optics Communications, 2024, 552(130075.

[13]     CHEN J, JI B, LANG P, et al. Impact of the geometry of the excitation structure on optical skyrmion [J]. Optics Express, 2023, 31(23): 37929-42.

[14]     SUN B, LANG P, JI B, et al. Correlation between plasmon lifetime and near-field enhancement in nanoparticle-on-film systems [J]. Journal of the Optical Society of America B, 2023, 40(9): 2330-8.

[15]     LI Y, PENG S, WANG L, et al. Enhanced photoelectron emission from dark plasmon mode in gold nanoring [J]. Chinese Journal of Physics, 2023, 85(104-11.

[16]     HU H, JI B, WANG L, et al. High spatiotemporal resolved imaging of ultrafast control of nondiffracting surface plasmon polaritons [J]. Nanophotonics, 2023, 12(12): 2121-31.

[17]     WANG L, JI B, XU Y, et al. Analysis of dephasing time of plasmonic hybridization modes using a quasi-normal<? TeX\break?> mode method [J]. Journal of the Optical Society of America B, 2022, 40(1): 178-86.

[18]     XU Y, QIN Y, LANG P, et al. Flexible manipulation of plasmon dephasing time via the adjustable Fano asymmetric dimer [J]. Photonics Research, 2022, 10(10): 2267-77.

[19]     HU H, JI B, SONG H, et al. Ultrafast spatiotemporal control of the femtosecond Bessel surface plasmon polariton by a chirped laser pulse [J]. Optics Communications, 2023, 526(128910.

[20]     SONG H, LANG P, JI B, et al. Spatiotemporal manipulation of localized plasmon modes within nano-femto scale using femtosecond chirped pulses; proceedings of the Nanophotonics, Micro/Nano Optics, and Plasmonics VIII, F, 2023 [C]. SPIE.

[21]     XU Y, QIN Y, JI B, et al. Polarization-tunable compact plasmonic wavelength demultiplexers based on Fano nanoantennas [J]. Journal of the Optical Society of America B, 2021, 39(1): 355-63.

[22]     WANG G, LANG P, QIN Y, et al. Nanoscale photoemission from a focused propagating surface plasmon [J]. Physical Review B, 2021, 104(15): 155432.

[23]     SUN B, JI B, LANG P, et al. Local near-field optical response of gold nanohole excited by propagating plasmonic excitations [J]. Optics Communications, 2022, 505(127498.

[24]     HU H, QIN Y, JI B, et al. Efficient and wavelength-dependent directional launching of a nondiffracting surface plasmon polariton beam device [J]. Optical Materials Express, 2021, 11(10): 3370-80.

[25]     HU H, QIN Y, LANG P, et al. Investigation of a dual-hole structure-based broadband femtosecond nondiffracting SPP beam emitter by photoemission electron microscopy [J]. Optics & Laser Technology, 2022, 146(107538.

[26]     SONG H, LANG P, JI B, et al. Controlling the dynamics of the plasmonic field in the nano-femtosecond scale by chirped femtosecond laser pulse [J]. Optical Materials Express, 2021, 11(9): 2817-27.

[27]     XIANG-YU Z, YU-LU Q, BO-YU J, et al. Near-field imaging of femtosecond propagating surface plasmon and regulation of excitation efficiency [J]. 机械工程学报, 2021, 70(10): 107101-1--7.

[28]     WANG G, SONG X, JIANG M, et al. Fano resonance enhanced multiphoton photoemission from single plasmonic nanostructure excited by femtosecond laser [J]. Physical Review B, 2021, 103(15): 155403.

[29]     WANG G, JI B, SONG X, et al. Ultrafast switching of photoemission by polarization modulation in a metallic plasmonic nanostructure [J]. Chinese Journal of Physics, 2021, 70(203-12.

[30]     ZHAO Z, JI B, SONG X, et al. Spatiotemporal imaging of weakly excited femtosecond SPP based on space-dependent-quantum channel effect; proceedings of the Plasmonics VI, F, 2021 [C]. SPIE.

[31]     ZHAO Z, LANG P, QIN Y, et al. Distinct spatiotemporal imaging of femtosecond surface plasmon polaritons assisted with the opening of the two-color quantum pathway effect [J]. Optics Express, 2020, 28(13): 19023-33.

[32]     LANG P, SONG X, JI B, et al. Spatial-and energy-resolved photoemission electron from plasmonic nanoparticles in multiphoton regime [J]. Optics Express, 2019, 27(5): 6878-91.

[33]     LANG P, JI B, SONG X, et al. Ultrafast switching of photoemission electron through quantum pathways interference in metallic nanostructure [J]. Optics letters, 2018, 43(23): 5721-4.

[34]     QIN J, JI B, LANG P, et al. Investigation of ultrafast plasmon control in silver block by PEEM [J]. Chinese journal of physics, 2018, 56(1): 340-5.

[35]     QIN J, LANG P, JI B-Y, et al. Imaging ultrafast plasmon dynamics within a complex dolmen nanostructure using photoemission electron microscopy [J]. Chinese Physics Letters, 2016, 33(11): 116801.

科研项目成果

1. 飞秒激光作用金属纳米结构光发射电子的高时空分辨调控,中国博士后科学基金面上项目,8万元,项目负责人;

2. 超快纳米等离激元光发射电子的全光控制及其高时空分辨成像研究,中国自然科学基金青年项目,24万元,项目负责人;

3. 基于耦合等离激元效应的光电子发射特性及高时空分辨研究,吉林省科技厅自由探索项目,10万元,项目负责人;

4. 等离激元近场的时空演化特性研究,吉林省教育厅科学技术研究项目,2.5万元,项目负责人;

5. 入选“第六批吉林省青年科技人才托举工程”,吉林省科学技术协会,10万元,项目负责人;

6. 基于等离激元纳米结构的光辐射超短电子脉冲产生及控制,国家自然科学基金面上项目,63万元,参与;

7. 超高时空能量分辨技术在微纳器件物理中的应用,科技部重点研发计划课题,437万元,参与;


友情链接